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MCD of non-aromatic cyclic ð-electron systems. Part 1. The
perimeter model for antiaromatic 4N-electron [n]annulene biradicals 1

Udo Höweler, John W. Downing, Jörg Fleischhauer† and Josef Michl*
Department of Chemistry and Biochemistry, University of Colorado, Boulder,
CO 80309-0215, USA

The LCAO version of the perimeter model with overlap through second order is used to obtain algebraic
solutions for the singlet electronic states of the antiaromatic 4N-electron [n]annulenes of Dnh symmetry.
The states of these biradicals are classified and their spectroscopic properties derived. General simple
results are given for the signs and magnitudes of the A, B and C terms in magnetic circular dichroism. The
effects of perturbations that preserve the antiaromatic biradical or biradicaloid character are considered.
Other perturbations will be treated in Parts 2 and 3.

1. Introduction
Paul Dowd, to whose memory this paper is dedicated, played an
essential role in developing the contemporary understanding of
the properties of biradicals. These usually highly reactive
species are well recognized as crucial intermediates in many
thermal and photochemical processes and as fundamental
building blocks in the design of organic magnetic materials.
Here, we turn to another important facet of biradical chem-
istry, namely to their use as important paradigms of electronic
structure.

Specifically, we shall deal with 4N-electron [n]annulenes,
expected to be perfect biradicals at their most symmetrical Dnh

geometries. Although they are of limited practical significance
themselves, their electronic structure is of considerable theor-
etical interest since they are the focal points for the understand-
ing, classification and organization of the electronic states of a
large number of related compounds that are not biradicals, and
for the prediction of trends in their properties.

Although high-quality ab initio computations of a large
number of states for many individual compounds are helpful,
systematic state correlations, classification, and qualitative
understanding of trends are most easily obtained from simple
models that allow algebraic solutions for families of com-
pounds. The models are only useful if they contain all of
the relevant physics and if they agree at least qualitatively
with the more sophisticated calculations where the latter are
available. In a sense, at least for a limited number of low-
energy states, the simple models allow us to understand why the
ab initio computations provide the answers they give.

A classical example of a simple algebraically soluble model
that provided a great deal of qualitative understanding, spectral
interpretations and predictions for the electronic states of
a large family of compounds is the perimeter model of cyclic
π-electron systems derived from (4N 1 2)-electron [n]annulenes.
This was originally developed by Platt in the free-electron form 2

and cast by Moffitt into the LCAO form.3 It provided an early
understanding of the systematics of low-lying electronic states
of aromatic molecules such as the polyacenes,2,3,4,5 azulenes 6

and porphyrins.7 The ability of this model to correlate trends in
transition energies, intensities and polarizations of a vast group
of organic compounds is remarkable. It also introduced the Lb,
La, Bb, Ba state notation, commonly used to the present day.
This notation represents a valuable complement to the group
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theoretical notation, since it transcends a huge diversity of
structural variations.

It is known 8,9,10 that only a minor refinement with respect to
the treatment of overlap is needed to extend the perimeter
model to the interpretation of absolute signs in magnetic circu-
lar dichroism (MCD). By now, a simple set of rules derived
from the perimeter model has accounted for hundreds of MCD
signs in the spectra of all kinds of aromatic π-systems, i.e. those
derived from a (4N 1 2)-electron perimeter.11 The trends and
regularities in the effects of substitution, heteroatom replace-
ment, and other structural changes on these signs can be simply
understood and/or predicted in an a priori fashion without
recourse to numerical computations.

These results and the Platt notation are not applicable to
cyclic even-electron chromophores that cannot be derived by
perturbation of a (4N 1 2)-electron perimeter. In the present
series of papers we ask whether the perimeter model can
account for the electronic properties and the MCD signs of
singlet ground state cyclic π-electron systems derivable from the
‘antiaromatic’ Dnh-symmetry 4N-electron [n]annulene perim-
eters, which are of biradical nature, and whether it again leads
to useful predictions and to a systematic nomenclature, gener-
ally applicable regardless of structural types. Such a nomen-
clature presently does not exist for π-electron chromophores
derived from this type of perimeter. Triplet states will have to be
dealt with separately.

Chart 1 displays the relations between the terms we propose
to use for the classification of even-electron cyclic π-systems
for the purposes of electronic and, in particular, MCD spec-
troscopy. The concepts of Dnh-symmetry parent aromatic
(4N 1 2)-electron [n]annulene and antiaromatic 4N-electron
[n]annulene perimeters are well established. We now propose to
use the terms aromatic and nonaromatic, and three subdivisions
of the latter category, ambiaromatic, antiaromatic and unaro-
matic, to describe all those systems formally obtainable from a
Dnh polygon [n]annulene perimeter by cross-linking, bridging
(in Chart 1, once by union with C1– and once with C2–),
heteroatom replacement and substitution. Although uncom-
mon, this nomenclature is space-saving and convenient for the
present purpose.

Aromatic ð-systems
In the past we used the term ‘aromatic’ for all systems derivable
from (4N 1 2)-electron perimeters. Except perhaps in some
cases of very strongly perturbed perimeters such as uracil, this
coincided fairly well with the common usage of the term. We
now need to restrict the term aromatic to those cyclic π systems
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that can be derived from a (4N 1 2)-electron perimeter but
cannot be derived equally well from a 4N-electron perimeter.
This will exclude molecules such as the phenalenide anion (1) or
acenaphthylene (2) from the aromatic category.

Non-aromatic cyclic ð systems
We use the expression ‘non-aromatic cyclic π system’ to
describe all π-electron systems that can be derived from a 4N-
electron perimeter, regardless of whether they are ambiaro-
matic, antiaromatic or unaromatic. To some readers, the word
‘non-aromatic’ may imply acyclic conjugation or no conju-
gation unless explicitly specified otherwise, but this is not our
usage of the term.

(i) Ambiaromatic. Those cyclic π systems that can be derived
equally well from both (4N 1 2)-electron and 4N-electron per-
imeters, such as 1 and 2, are called ambiaromatic to indicate
the ambiguous nature of their electronic state labels, with two
alternative sets of labels equally justified.

(ii) Antiaromatic. It would be misleading to refer to all sys-
tems that are derivable only from an antiaromatic 4N-electron
annulene as antiaromatic since many, such as biphenylene,
exhibit significant resonance stabilization and the term
antiaromatic already has a well established specific meaning
which precludes that. Thus, we use the term antiaromatic only
for the 4N-electron annulene perimeters of Dnh symmetry and

Chart 1 Classification of even-electron cyclic π systems for the pur-
poses of electronic spectroscopy
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for those cyclic π-electron systems that are derivable from them
[but not equally well from a (4N 1 2) perimeter] that still have
very strong biradical-like character, like the parent annulenes.
As will be shown in Part 2, the distinction can be made quite
clear and quantitative within the two-electrons-in-two-orbitals
(3 × 3 CI) approximation for the ground state. This definition
of ‘antiaromatic’ is very restrictive and very few, if any, known
singlet molecules have equilibrium ground-state structures that
satisfy the requirement, due to the occurrence of Jahn–Teller
and pseudo-Jahn–Teller distortions.

(iii) Unaromatic. We then need another term to describe
cyclic π-electron systems derivable from a 4N-electron [n]annu-
lene perimeter [but not equally well from a (4N 1 2)-electron
perimeter] by perturbations that are strong enough to remove
biradical-like character (e.g. biphenylene, pentalene, p-benzo-
quinone). We have decided to adopt the term unaromatic,
which does not appear to have been pre-empted.

Note that in our usage the terms aromatic, ambiaromatic,
antiaromatic and unaromatic are primarily meant to provide
formal information about the structural formula only. Their
relation to molecular stability, reactivity, ring current, etc., is
only indirect insofar as these properties are determined once a
structural formula is specified.

The purpose in defining the various categories of even-
electron cyclic systems is to identify unambiguously the range
of applicability of the four systems of electron singlet state
classification that we shall arrive at in our attempt to make
general statements about intensities, polarizations, and above
all, MCD signs of electronic transitions. In addition to the
lowest singlet state G, we shall have the following low-energy
singlet electronic states: (i) aromatic systems: Lb, La, Bb, Ba

(uncharged perimeters, n = 4N 1 2) 3,5,6 or L1, L2, B1, B2

(charged perimeters, n ≠ 4N 1 2);7–10 (ii) antiaromatic (biradi-
cal) systems: modified irreducible representation symbols such
as B(1), B(2), E(2)

2N 1 1 etc., and in the special case of certain high
symmetry perturbations: S, D, N, N9, P, P9 (Part 1 of this
series); (iii) unaromatic systems: S, D, N1, N2, P1, P2 (Parts 2 and
3 of this series); (iv) ambiaromatic systems: labels from (i) and
(iii) are both equally applicable (Parts 2 and 3 of this series).

Two distinct nomenclature systems for the antiaromatic and
the unaromatic systems derived from uncharged perimeters are
needed since there is no one-to-one correspondence between
the two, due to the presence of a conical intersection of the
lowest two singlet surfaces (Part 2). Categories (ii), (iii) and (iv)
together are referred to as cyclic non-aromatic in the title of
the present series of papers. Aromatic systems (i) have been
handled in a previous series of papers.8,9,10,11

In Part 1 of this series, we describe the results of the perim-
eter model for the MCD spectra of antiaromatic [n]annulenes at
their ideal Dnh symmetry, at which they are perfect biradicals,
and of those of their perturbed analogs that are still anti-
aromatic, i.e. are perfect biradicals or at least biradicaloids.
Uncharged (4N = n) and charged (4N ≠ n) perimeters need to be
treated separately. The former are ‘pair biradicals’ and the latter
are ‘axial biradicals’ in the sense of ref. 12.

We find simple results only for those systems in which the
highest fully occupied MO and the lowest completely un-
occupied MO are degenerate, i.e., the parent [n]annulenes of
Dnh symmetry and some high-symmetry alternant biradicaloids.
In some other cases, the results can be written explicitly as well
but are too complicated to offer insight without a numerical
calculation. This will not matter much in practice; although
an appreciation of the case of antiaromatic systems is a
prerequisite for the understanding of the unaromatic ones, in
practice the former will be rarely, if ever, encountered.

In Parts 2 and 3, we will consider unaromatic π systems, i.e.
those derived from the parent antiaromatic Dnh [n]annulene per-
imeters by stronger perturbations (e.g. Chart 1). As indicated
above, for these, a general classification and simple rules for
MCD signs as a function of molecular structure are obtained.
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Their use is illustrated on two ambiaromatic systems whose
MCD spectra have already been discussed earlier in terms of
the Platt L, B nomenclature, applicable to aromatic π systems.
In subsequent papers of the series, we will apply the results to
several other classes of unaromatic compounds.

2. The perimeter model
The formulation of the perimeter model for 4N-electron [n]-
annulenes follows closely the pattern set up for (4N 1 2)-
electron [n]annulenes,10 and only the nature and properties of
the many-electron configurations and states are different. In
particular, (i) we adopt the zero-differential-overlap (ZDO)
approximation for Löwdin-orthogonalized atomic orbitals, (ii)
we keep only the nearest-neighbor resonance integrals β1

between these orthogonalized AOs in the evaluation of energy
terms, so the pairing theorem applies for alternant (even)
perimeters, (iii) for the magnetic moment operator ì̂  both the
nearest and the next-nearest neighbor matrix elements in the
orthogonalized AO basis are kept, for reasons explained in
the next section. On several occasions, we point out simplifi-
cations in the results that are obtained when only the nearest
neighbor matrix elements of ì̂  are kept (‘perfect alternant
pairing approximation’).

AO basis
For the π system of a parent Dnh 4N-electron [n]annulene, we
define a basis set of n non-orthogonal 2pz atomic orbitals
labeled 0 to n–1 and located at the vertices of a regular polygon
whose center is at the origin of a right-handed coordinate sys-
tem characterized by the unit vectors x, y and z, with x going
through atom 0 and z directed perpendicular to the polygon
(Fig. 1). The matrix elements of the single-electron electric (m̂)
and magnetic (ì̂) dipole moment operators are defined in this
basis according to ref. 8. These AOs are subject to an explicit
Löwdin orthogonalization,13 considering overlap integrals only
through second order. The ratio of the matrix elements of µ̂z

between next-nearest-neighbor AOs to that for nearest-
neighbor AOs is set to 20.15 as justified by direct integration
for STOs.8

MO basis
The complex MOs , eqn. (1), are obtained by symmetry adap-

Fig. 1 Left, the coordinate system and the assumed geometry of a
regular [n]annulene perimeter. Right, electron occupancy in the con-
figuration Ψ0 of a 4N-electron [n]annulene. The orbitals are labeled by
the subscript k of the irreducible representation εk in the C16 symmetry
group. The dominant sense of angular electron motion is indicated
schematically and the z component of the resulting orbital magnetic
moment is shown by a white arrow. The ten single excitations under
consideration are shown as dark arrows. The vertical arrows corres-
pond to excitations which require left-handed (LHC) or right-handed
(RHC) circularly polarized light as shown, the other transitions are
forbidden.
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(1)

tation of the Löwdin orbitals χν to the n-fold axis of symmetry.
The index k denotes the orbital angular momentum ‘quantum
numbers’ as well as the label of the irreducible representation εk

of the Cn symmetry group according to which ψk transforms.
The energy of the orbitals increases with increasing absolute
value of k as indicated in Fig. 1.

The non-vanishing matrix elements of the electric and mag-
netic dipole moment operators in the MO basis are:8

〈ψk | m̂ |ψk ± 1〉 = m(n, | 2k ± 1 |)(x ± iy)/√2 (2)

〈ψk | ì̂ |ψk〉 = µ(n,k)z (3)

the values of m(i, j ) are:

m(3,1) = 2el0 (1 1 9S2/8)/√6 (4)

m(4,1) = m(4,3) = 2el0(1 1 S2/2)/2 (5)

m(n, j ) = [(2el0/2√2) sin (π/n)][1 1 2S2 sin2 (π/n) sin2 (πj/n)]

for n > 4 (6)

the values of µ(n,k) are:

µ(3,±1) = 12|β1|(mβel0
2/2h

_2)(1 1 S) (7)

µ(n,k) =
2|β1|(mβel0

2/h
_2) cos (π/n)[sin (2πk/n) 2 0.15 sin (4πk/n)]

for n > 3 (8)

where e and m are the magnitudes of the electron charge and
mass, l0 is the distance between neighboring AOs, S is their
overlap integral, |β1| is the magnitude of the resonance integral
for nearest neighbors and βe is the Bohr magneton. The electric
dipole moment integrals vanish except for transitions which
change k by unity and the magnetic dipole moment operator is
diagonal, with positive moments for k < 0 and negative ones for
k > 0, as shown in Fig. 1. The magnitudes m(n,|2k ± 1|) and
µ(n,k) are characteristic of perimeter size and charge.8 The
factor 20.15 in eqn. (8) results from the sign and estimated size
of the next-nearest neighbor resonance integral relative to the
usual nearest-neighbor resonance integral. This estimate 8 is
supported by recent ab initio evaluations of this semiempirical
parameter.14

Configuration state function basis
Only the MOs ψN 2 1, ψ2N 1 1 (the highest fully occupied level of
the ground configuration, HO), ψN, ψ2N (the level of singly
occupied orbitals, SO) and ψN 1 1, ψ2N 2 1 (the lowest com-
pletely unoccupied level, LO) are considered in the generation
of the active singlet configuration space (Fig. 1). In the fol-
lowing we shall need to refer to the average energy of the
HO orbital pair ψN 2 1, ψ2N 1 1 as E(HO), the average energy
of the SO orbital pair ψN, ψ2N as E(SO) and the average
energy of the LO orbital pair ψN 1 1, ψ2N 2 1 as E(LO). In this
context, the orbital energies refer to the one-electron part of the
Hamiltonian only.

The reference singlet configuration is Ψ0 = 1|ψ0
2ψ1

2ψ21
2 . . .

ψN 2 1
2ψ2N 1 1

2ψN
1ψ2N

1〉 (Fig. 2). In the general case, ten
singlet configurations related to it by single excitations are con-
sidered. Restricting the configuration basis to these few single
excitations is justified by the fact that other excitations are both
of higher energy and have vanishing or nearly vanishing electric
dipole transition moments from Ψ0. We use notation Ψl

k for a
singlet excitation from ψk to ψl .

The configurations ΨN
2N and ΨN

2N arise from excitations with-
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Table 1 Configurations and their properties

Configuration Symmetry a Magnetic moment

Ψ0
1|ψ0ψ̄0 . . . . ψNψ̄2N〉 ε0 0

ΨN
2N

1|ψ0ψ̄0 . . . . ψNψ̄N〉 ε2N 2µ(n,N)

ΨN
2N 1|ψ0ψ̄0 . . . . ψ2Nψ̄2N〉 ε22N 22µ(n,N)

ΨN
N 1 1 1|ψ0ψ̄0 . . . . ψ2Nψ̄N 1 1〉 ε1 µ(n,N 1 1) 2 µ(n,N)

Ψ2N
2N21 1|ψ0ψ̄0 . . . . ψNψ̄2N 2 1〉 ε21 2µ(n,N 1 1) 1 µ(n,N)

ΨN
N 2 1

1|ψ0ψ̄0 . . . . ψNψ̄NψN 2 1ψ̄2N〉 ε1 µ(n,N) 2 µ(n,N 2 1)

Ψ2N
2N 1 1

1|ψ0ψ̄0 . . . . ψ2Nψ̄2Nψ2N 1 1ψ̄N〉 ε21 2µ(n,N) 1 µ(n,N 2 1)

ΨN
2N21 1|ψ0ψ̄0 . . . . ψ2Nψ̄2N 2 1〉 ε22N 2 1 2µ(n,N 1 1) 2 µ(n,N)

Ψ2N
N 1 1 1|ψ0ψ̄0 . . . . ψNψ̄N 1 1〉 ε2N 1 1 µ(n,N 1 1) 1 µ(n,N)

ΨN
2N 1 1

1|ψ0ψ̄0 . . . . ψNψ̄Nψ2N 1 1ψ̄2N〉 ε2N 2 1 µ(n,N) 1 µ(n,N 2 1)

Ψ2N
N 2 1

1|ψ0ψ̄0 . . . . ψ2Nψ̄2NψN 2 1ψ̄N〉 ε22N 1 1 2µ(n,N) 2 µ(n,N 2 1)

a Subscripts on the irreducible representations εk would change sign if functions rather than basis vectors were subjected to symmetry operations.

in the SO shell. Two excitations of the HO → SO type yield
the configurations ΨN

N 2 1 and Ψ2N
2N 1 1 and preserve the sense of

electron circulation, as do two of the SO → LO excitations,
leading to ΨN

N 1 1 and Ψ2N
2N 2 1. Finally, two sense-reversing

HO → SO excitations, which produce Ψ2N
N 2 1 and ΨN

2N 1 1, and
two sense-reversing SO → LO excitations, which produce
ΨN

2N 2 1 and Ψ2N
N 1 1, are also included. The configurations and

their symmetries in the Cn subgroup are listed in Table 1, which
also gives the matrix elements of the z component of the mag-
netic dipole moment operator, which is diagonal in this basis.
The magnetic moment of Ψ0 vanishes, those of the sense-
preserving configurations are small, and those of the sense-
reversing configurations are large.

No electric dipole transition moments connect the lowest
three configurations. Transitions from Ψ0 are allowed only to
the sense-preserving configurations, whereas transitions from
ΨN

2N and ΨN
2N are allowed to two distinct pairs of sense-

reversing configurations. Taking z to be the light propagation
direction as well as the direction of the magnetic field, x 1 iy
indicates a left-handed and x 2 iy a right-handed circular
polarized transition that requires a photon with a z-component
of angular momentum 1h

_
 and 2h

_
, respectively, to be

absorbed.
In this configuration basis the Hamiltonian matrix is given by

the expression (9), where the perturbation parameters which

Fig. 2 The Ψ0 configuration in the various types of 4N-electron [n]-
annulenes (m > 1). The numbers in parentheses are those of the Tables
in which additional information is contained.

will be needed later are now set equal to zero, h = h* = s =
s* = l = l* = 0. The charge on the perimeter is q = n 2 4N and
the Kronecker delta symbol δiq vanishes when i ≠ q and equals
one when i = q. The resulting presence of certain matrix elem-
ents affects the final results for perimeters carrying zero, one, or
two charges, and these then need to be presented separately.
Also perimeters in which n and N are such that HO or LO or
both are non-degenerate require a separate treatment (Fig. 2).

The energy of the degenerate configurations ΨN
2N and ΨN

2N

has been subtracted along the diagonal. The non-vanishing
two-electron repulsion integrals which enter the Hamiltonian
matrix are those in which the overlap density due to the first
electron transforms like εl , while that due to the second electron
transforms like ε2l . In the zero-differential-overlap (ZDO)
approximation, the magnitude of each integral depends only on
the absolute value of l and we write it as [l ]. The integrals are
positive and decrease in magnitude with increasing l from l = 0
to l = n/2 or (n 2 1)/2.

Thus integral (10) is nonzero only for r,s,t,u satisfying s 2 r ≡

∫∫ψr*(1)ψs(1)(e2/r12)ψt*(2)ψu(2)dτ1dτ2 (10)

t 2 u mod n, and is denoted by [l ], where l = min(|s 2 r|,
n 2 |s 2 r|).

The quantity c is related to the one-electron energy difference
of the HO and LO levels and is defined by eqn. (11). Its magni-
tude determines the average excitation energies and will typic-
ally be taken from experiment.

c = [E(LO) 2 E(HO)]/2 1 [1] 2 [2N] (11)

A quantity which is of crucial importance in determining the
MCD signs is ∆HSL, generally defined as twice the difference
between the separation ∆SH of the average one-electron energy
of the SO levels [E(SO)] from that of the HO levels [E(HO)],
and the separation ∆LS of the average one-electron energy of
the LO levels [E(LO)] from that of the SO levels [E(SO)], eqn.
(12).

∆HSL = 2(∆SH 2 ∆LS) =
2{|E(SO) 2 E(HO)| 2 |E(LO) 2 E(SO)|} (12)

In the presently considered case of Dnh symmetry, the HO,
SO and LO levels are all pairwise degenerate and the average
energies E(HO), E(SO) and E(LO) of orbital pairs are equal to
the respective orbital energies themselves.
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ε0 Ψ0  [2N] √ 2s* √ 2s 0 0 0 0 0 0 0 0 
ε2N ΨN

2N  √ 2s 0 [2N] δ0q 0 0 0 0 √ 2[2N] δ11q 0 0 2√ 2[2N] δ21q 
ε22N ΨN

2N  √ 2s* [2N] δ0q 0 0 0 0 0 0 2√ 2[2N] δ21q √ 2[2N] δ11q 0 
ε1 ΨN

N 1 1 


0 0 0 c 2 ∆HSL/4
1 [2N 1 1]

2[1] 0 0 l 0 s* 0 


ε1 ΨN
N 2 1 


0 0 0 2[1] c 1 ∆HSL/4

1 [2N 2 1]
0 0 0 2h* 0 2s 


ε21 Ψ2N

2N 2 1 


0 0 0 0 0 c 2 ∆HSL/4
1 [2N 1 1]

2[1] s 0 l* 0 


ε21 Ψ2N
2N 1 1 


0 0 0 0 0 2[1] c 1 ∆HSL/4

1 [2N 2 1]
0 2s* 0 2h 


(9)

ε22N 2 1 Ψ2N 2 1
N 


0 √ 2[2N] δ11q 0 l* 0 s* 0 c 2 ∆HSL/4

1 [1]
2[2N 2 1] δ0q [2N] δ12q 1

[2N 1 1] δ12q

0 


ε2N 2 1 ΨN
2N 1 1 


0 0 2√ 2[2N] δ21q 0 2h 0 2s 2[2N 2 1] δ0q c 1 ∆HSL/4

1 [1]
0 [2N] δ22q 1

[2N 2 1] δ22q




ε2N 1 1 Ψ2N
N 1 1 


0 0 √ 2[2N] δ11q s 0 l 0 [2N] δ12q 1

[2N 1 1] δ12q

0 c 2 ∆HSL/4
1 [1]

2[2N 2 1] δ0q 


ε22N 1 1 Ψ2N
N 2 1  0 2√ 2[2N] δ21q 0 0 2s* 0 2h* 0 [2N] δ22q 1

[2N 2 1] δ22q

2[2N 2 1] δ0q c 1 ∆HSL/4
1 [1]
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A simple intuitive interpretation of the crucial quantity
∆HSL is to view it as a measure of the imbalance between the
relative ease of excitation into and out of the half-occupied
‘Fermi’ level, SO. ∆HSL is negative if the former requires less
energy and positive if the latter does. The alternant pairing
theorem guarantees it to vanish in uncharged alternant perim-
eters in the present approximation, in which only the nearest-
neighbor resonance integrals β1 are kept. If needed, this
approximation can be relaxed easily and the ∆HSL value can be
taken from another source.

The three configurations in which the SO shell contains two
electrons, Ψ0, ΨN

2N and ΨN
2N, are far below the others in energy.

They span the space used in the well known 3 × 3 CI model for
the lowest three singlet states of biradicals.12,15–18 The remaining
eight configurations are pairwise degenerate and do not mix
with the former three, except in the case of singly charged per-
imeters. Even then, the mixing will be weak because of the large
energy gap.

State eigenfunctions
The diagonalization of the Hamiltonian matrix produces the
eleven state eigenfunctions that need to be substituted into the
general expressions 19 for A, B and C terms, which characterize
an MCD spectrum, and for the dipole strength D, which char-
acterizes absorption intensities.

The MCD spectrum contains a sum of contributions from all
excited states. The contribution due to the transition from the
ground state G into the excited state F is given by eqn. (13),

[Θ]M = 221.3458{ f2[B(G → F) 1 C(G → F)/kT] 1

f1A(G → F)} (13)

where [Θ]M is the magnetically induced molar ellipticity per unit
magnetic field in deg l m21 mol21 G21, the line shape function f2

is that of an absorption line and f1 that of a derivative of an
absorption line, k is Boltzmann’s constant, T is absolute tem-
perature, and A(G → F), B(G → F) and C(G → F) are
the Faraday parameters of the G → F transition. A is in
units of D2βe and B and C/kT are in units of D2βe/cm21. In a
molecule with a non-degenerate ground state, C(G → F)
vanishes for all F. If the excited state F also is non-degenerate,
A(G → F) vanishes as well. Note that a negative B term
corresponds to a positive peak in the MCD spectrum.

The values of the A, B and C terms are usually obtained from
the measured spectra using the method of moments. For an
isotropic solution,

A = 33.5321 ∫dν̃ (ν̃ 2 ν̃ 0)[Θ]M/ν̃ (14)

B 1 C/kT = 33.5321 ∫dν̃[Θ]M/ν̃

where ν̃ is wavenumber and ν̃0 is the center of the absorption
band. The integration is over the region of the band due to the
G → F transition.

When vibrational fine structure is ignored, the follow-
ing expressions result from the use of first-order perturbation
theory for the effect of the magnetic field:

A(G → F) = (1/2g) o
γα

(〈Fα |MMM̂ |Fα〉 2 〈Gγ |MMM̂ |Gγ〉)?

Im(〈Gγ |M̂ |Fα〉 × 〈Fα |M̂ |Gγ〉) (15)

B(G → F) =

(1/g) o
γα

Im {o
Kκ

K ≠ F

〈Fα |MMM̂ |Kκ〉?〈Gγ |M̂ |Fα〉 ×

〈Kκ |M̂ |Gγ〉/[W(K) 2 W(F)] 1 o
Kκ

K ≠ G

〈Kκ |MMM̂ |Gγ〉?〈Gγ |M̂ |Fα〉 × 

〈Fα |M̂ |Kκ〉/[W(K) 2 W(G)]} (16)

C(G → F) =

(1/2g) o
γα

〈Gα |MMM̂ |Gγ〉?Im(〈Gγ |M̂ |Fα〉 × 〈Fα |M̂ |Gγ〉) (17)

where the Greek subscripts identify the components of the pos-
sibly degenerate states G, K and F, and g is the degeneracy of
the ground state. The summation over K runs over all electronic
states. Im stands for ‘imaginary part of ’, M̂ = oim̂i is the total
electric dipole moment operator and MMM̂ = oi ì̂ i is the total
magnetic dipole moment operator. W(I) denotes the energy of
the state I. The wavefunctions |G〉, |K〉 and |F〉 are those in the
absence of magnetic field.

The dipole strength D is defined by eqn. (18).

D(G → F) = (1/g) o
γα

| 〈Fα |M̂ |Gγ〉|2 (18)

In the following, we consider first the idealized case of singlet
states of 4N-electron [n]annulenes at Dnh symmetry, although in
reality measurements on the lowest singlet state cannot be done
at this geometry because of pseudo-Jahn–Teller distortions (in
uncharged annulenes) or Jahn–Teller distortions (in charged
annulenes). However, the results for Dnh symmetry will serve as
the starting points for the discussion of perturbations which
produce observable systems, either weakly perturbed anti-
aromatic ones (Part 1) or strongly perturbed unaromatic ones
(Parts 2 and 3).

Some statements about the results are general but quite a few
differences exist between the charged and the uncharged perim-
eters, which will therefore be discussed separately. Table 2 lists
all the special cases that need to be treated separately in view of
the coincidence of some irreducible representations of the Cn

group that are distinct in the general case.
Four abbreviations that will be found useful in the following

are given in eqn. (19). The magnetic moments µ±, relevant

∆21(X,Y) ≡ [W(X) 2 W(Y)]21; m± ≡ m(n,2N 1 1) ±

m(n,2N 2 1); µ ≡ µ(n,N); µ± ≡ µ(n,N 1 1) ±

µ(n,N 2 1) (19)

for 4N-electron perimeters, should not be confused with the
related but differently defined magnetic moments µ± defined
earlier 8 for (4N 1 2)-electron perimeters.

3. Magnetic circular dichroism of uncharged
antiaromatic Dnh 4N-electron [n]annulenes (4N 5 n)

3.1 General (n > 4)
All eleven configurations need to be considered. For uncharged
Dnh symmetry [n]annulenes the representations ε2N and ε22N

coincide and are labeled b in the Cn symmetry group. Thus ΨN
2N

and ΨN
2N are coupled through a matrix element of the two-

electron part of the Hamiltonian, equal to [2N]. The resulting
in-phase combination B(1) = (ΨN

2N 1 ΨN
2N)/√ 2 is destabilized

by [2N] and together with A = Ψ0 forms the first excited acci-
dentally doubly degenerate singlet state. The exact degeneracy
is lifted in more extensive CI calculations.18 The character and
the properties of the two components are however not changed
much relative to the simple model, since the splitting is not due
to their direct mutual interaction.

The out-of-phase combination B(2) = (ΨN
2N 2 ΨN

2N)/√ 2 is
stabilized by [2N] and becomes the lowest singlet state G, de-
generate with the lowest triplet state. The ambiguity concerning
the nature of the true ground state has been resolved in favor
of the singlet state by calculations which include a larger con-
figuration basis that comprises all excitations within the π levels
or even include correlation for σ electrons.18 Thus, it is reason-
able to take the out-of-phase combination B(2) = (ΨN

2N 2 ΨN
2N)/
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Table 2 Classes of antiaromatic 4N-electron [n]annulenes

Degeneracy Special
symmetry

N n Example HO SO LO properties

1 3 C3H3
2 1 2 0

1 4 C4H4 1 2 1

1 5 C5H5
1 1 2 2 ε2N 2 1 = ε1

ε2N = ε22N 2 1

1 6 C6H6
21 1 2 2 ε2N 2 1 = ε1

ε2N 1 1 = ε22N 2 1

1 7 C7H7
31 1 2 2 ε2N 2 1 = ε1

2 6 C6H6
22 2 2 1 ε2N 1 1 = ε21

ε2N 2 1 = ε22N 1 1

>1 2N 1 2 C8H8
42 2 2 1 ε2N 1 1 = ε21

>1 2N 1 1 C7H7
52 2 2 0 ε2N = ε21

>1 4N 1 2 C10H10
21 2 2 2 ε2N 1 1 = ε22N 2 1

>1 4N 2 2 C10H10
22 2 2 2 ε2N 2 1 = ε22N 1 1

>1 4N 1 1 C9H9
1 2 2 2 ε2N 1 1 = ε22N

>1 4N 2 1 C7H7
2 2 2 2 ε2N 2 1 = ε22N

>1 4N C8H8 2 2 2 ε2N 1 1 = ε22N 1 1

>2 2N 1 1 < n < 4N 2 2
or n > 4N 1 2

C11H11
31, C11H11

52 2 2 2

Table 3 4N-Electron [4N]annulenes (N > 1) a

State Energy D b MMM b,c B b

B1g
(2) 2[2N] — 0 —

B2g
(1) [2N] 0 0 0

A1g
(2) [2N] 0 0 0

E1u
(2) c 2 [1] 1 [2N 2 1] 0 µ2/2 0

E(2)
2N 1 1,u c 1 [1] 2 [2N 2 1] m2

2 µ2/2 22[∆21(B2g
(1),B1g

(2))µ 1 ∆21(E(1)
2N 1 1,u,E(2)

2N 1 1,u)(µ1 1 2µ)/4]m1m2

E(1)
2N 1 1,u c 1 [1] 1 [2N 2 1] m1

2 µ2/2 22[∆21(B2g
(1),B1g

(2))µ 2 ∆21(E(1)
2N 1 1,u,E(2)

2N 1 1,u)(µ1 1 2µ)/4]m1m2

E1u
(1) c 1 [1] 1 [2N 2 1] 0 µ2/2 0

a m1 ≡ m(n,2N 1 1) 1 m(n,2N 2 1), m2 ≡ m(n,2N 1 1) 2 m(n,2N 2 1), µ1 ≡ µ(n,N 1 1) 1 µ(n,N 2 1), µ2 ≡ µ(n,N 1 1) 2 µ(n,N 2 1), µ ≡ µ(n,N),
∆21(X,Y) ≡ [W(X) 2 W(Y)]21. b Spectroscopic characteristics of transitions from the B1g

(2) state. c State magnetic moment. For allowed excited states,
equal to 22(A 1 C)/D. If D = 0, the sign of M is ambiguous.

√ 2 as the ground state G of uncharged unperturbed Dnh

annulenes.20

The remainder of the Hamiltonian matrix (9) simplifies since
for uncharged alternant perimeters we have ∆HSL = 0 by the
alternant pairing theorem. The sense-preserving ε1 configur-
ations ΨN

N 1 1 and ΨN
N 2 1 interact through the two-electron part

of the Hamiltonian, and the two sense-preserving ε21 config-
urations related to them by complex conjugation do likewise,
to yield ultimately two doubly degenerate excited states of
E1 (≡ε1,ε21) symmetry, E1

(2) and E1
(1) (Table 3). In the C4N

symmetry groups the representations ε2N 2 1 and ε2(2N 1 1)

coincide, as do their complex conjugates ε2(2N 2 1) and ε2N 1 1.
Configurations that belong to these irreducible representations
are coupled through the two-electron part of the Hamilton-
ian and give rise to two doubly degenerate states of sym-
metry E2N 1 1 [≡ε2N 1 1,ε2(2N 1 1)], equal to E2N 2 1 [≡ε2N 2 1,
ε2(2N 2 1)]. These shall be labeled E(2)

2N 1 1 and E(1)
2N 1 1 (Table 3).

The energies of the electronic states increase in the order

G ≡ B(2), B(1), A(2), E1
(2), E(2)

2N 1 1, E
(1)
2N 1 1 and E1

(1), with the B(1)

and A(2) as well as the E(1)
2N 1 1 and E1

(2) states forming accidentally
degenerate pairs within the ZDO approximation. The labels (1)
and (2) are related to the in-phase and out-of-phase mixing of
complex configurations and indicate whether the contributions
to the transition moments from the ground state add (1) or
cancel (2). In the full Dnh symmetry group, the labels become
G ≡ B1g

(2) for the ground state, and B2g
(1), A1g

(2), E1u
(2), E(2)

2N 1 1,u, E(1)
2N 1 1,u

and E1u
(1) for the excited states. The energies and other properties

of these states are summarized in Table 3. For uncharged per-
imeters, which are alternant, the (1) and (2) symbols indicate
the parity of a state in the sense of Pariser’s alternant pairing, in
a way familiar from aromatic systems.21–24

Only G → E(2)
2N 1 1 and G → E(1)

2N 1 1 are allowed by sym-
metry as electric-dipole transitions. As indicated by the (2)
superscript, the dipole strength for the former vanishes within
the model due to a cancellation of the configuration transition
moments involved, m(n,2N 1 1) = m(n,2N 2 1), as do the B
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terms of both. Thus, the only intense transition that should
be observed in ordinary absorption or MCD spectra is
G → E(1)

2N 1 1, which has a non-vanishing A term.
The magnetic moments of the B(2), A(2) and B(1) states van-

ish. Those of the other excited states are identical in magnitude
and small, as they are given by half the difference of the HO
and LO orbital magnetic moments, µ2/2. Within the model,
µ2 vanishes if only the nearest-neighbor resonance integrals β1

are kept. Thus, the A terms of all uncharged 4N-electron
annulenes vanish exactly in the perfect alternant pairing
approximation, as expected from a general theorem.25 In order
to obtain sign predictions, it is necessary to go beyond this
approximation in the evaluation of the difference of the HO
and LO orbital magnetic moments, µ2. We then find that it is
proportional to the normally neglected next-nearest-neighbor
resonance integrals. This, then, is the excuse for keeping these
integrals in the evaluation of magnetic moment matrix ele-
ments, even though the resonance integrals between next-
nearest AOs are not kept. In this respect the µ2 moments are
very similar to the µ2 magnetic moment defined for uncharged
aromatic annulenes.8 Both would reverse their signs (incor-
rectly) if one failed to perform a Löwdin orthogonalization
explicitly before computing the matrix elements of the magnetic
dipole moment operator in a ZDO-type calculation.8,26

Only the symmetry-allowed transitions to the E(1)
2N 1 1 and

E(2)
2N 1 1 states can show non-vanishing B terms. Within the per-

fect alternant pairing scheme, the resultant B terms are calcu-
lated to be zero since they are proportional to the difference
m2 which vanishes within the model due to alternant pairing.
This is again in keeping with the general theorem.25

The fact that m(n,2N 1 1) is equal to m(n,2N 2 1), causing
m2 to vanish, is a consequence of the neglect of third and
higher powers of overlap in the explicit Löwdin orthogonaliz-
ation of the AO basis used to derive eqn. (2). If the orthog-
onalization is done exactly, m2 is calculated to be very slightly
different from zero. Insofar as the consequences of this are
detectable at all, they will result in a non-vanishing intensity
and a positive A term for the transition G → E(2)

2N 1 1, as well as
nonvanishing B terms for the two symmetry-allowed transi-
tions, G → E(2)

2N 1 1 and G → E(1)
2N 1 1. The B terms contain

contributions from the coupling of the B2g
(1) state with the

ground state and from the mutual magnetic mixing of the two
E2N 1 1 states. The former contribution has the sign of m2 and is
identical for both B terms, whereas the latter contribution has
opposite signs for G → E(2)

2N 1 1 and for G → E(1)
2N 1 1. Thus,

the B term expected for the E(2)
2N 1 1 state has inevitably the sign

of m2. The resulting sign of the B term of the higher-energy
E(1)

2N 1 1 state depends on the relative magnitudes of the state
energy differences. In general, it will be very small and hard to
detect next to the positive A term. It should be reemphasized
that all of the effects due to the minute difference between
m(n,2N 1 1) and m(n,2N 2 1) should be quite small and are
likely to be negligible relative to vibronic effects which we do
not consider here at all.

3.2 D4h [4]Annulene (n 5 4N 5 4)
Square cyclobutadiene is one of the special cases listed in Table
2. The HO and LO levels are not degenerate (a and b, respect-
ively, in the Cn group), leaving only seven of the general eleven
configurations (Table 4). The states B(2) ≡ B1g

(2), B(1) ≡ B2g
(1)

and A(2) ≡ A1g
(2) states are not affected, but now only two

doubly degenerate states, E1
(2) ≡ E(2)

2N 1 1 ≡ E1u
(2) and E1

(1) ≡ E(1)
2N 1 1 ≡

E1u
(1), arise. Transitions into both are symmetry allowed, and the

G → E1
(1) transition should be strong, but its B term vanishes

through second order in overlap, as do the dipole strength and
the B term for the G → E1

(2) transition. The magnetic
moments and A terms of the excited states vanish since the
orbital moments for the non-degenerate HO and LO levels are
zero.

When third and higher powers of overlap are not neglected, a

very small dipole strength for the G → E1
(2) transition and

small non-zero B terms for both symmetry allowed transitions
result, as they did in the general case. Now both B terms are
negative since m2 is positive and the contribution of the mixing
of the B(1) state into the ground state dominates in the previ-
ously ambiguous case of the higher energy transition.

4. Magnetic circular dichroism of charged Dnh

antiaromatic 4N-electron [n]annulenes (4N ≠ n)

4.1 General (| 4N 2 n | > 2)
All eleven configurations again need to be considered. However,
now the Cn group representations ε2N 1 1 and ε2(2N 2 1) are dis-
tinct, as are ε2N 2 1 and ε2(2N 1 1). The configurations of these
symmetries no longer interact, as they did for uncharged
perimeters.

The lowest singlet is then doubly degenerate, with the com-
ponents ε2N and ε22N. The third low-energy singlet wave
function is of A symmetry and lies higher by [2N]. The lowest
triplet lies lower by the same amount. In several known systems
of this kind the triplet is indeed the ground state in reality, but
this is not always so.18 As before,20  the integral [2N] is equal to
K9AB 1 KAB when expressed in integrals over the localized
orbitals ΨA and ΨB, but now symmetry enforces the equality
K9AB = KAB, whereas for the uncharged antiaromatic annulenes
KAB vanished in the ZDO approximation. In both instances, the
splitting between the lowest two singlet states is 2K9, but now,
the lowest singlet E2N is degenerate.27

In the following, we present results for the spectral properties
of the E2N state predicted from the simple model as the ground
state at the ideal Dnh geometry, since this acts as the parent of
the ground state of the perturbed systems of actual interest. It
is believed 18 that in some real systems the non-degenerate A
state actually is the ground state instead. Results for its spectra
could be obtained similarly but we shall only illustrate them on
an example for which experimental evidence suggests that they
are needed.

Turning attention to the lower right blocks of the 11 × 11
Hamiltonian matrix (9), we note that only the ε1 symmetry
configurations and their complex conjugates interact to give E1

(2)

and E1
(1) states, whereas the E2N 1 1 and E2N 2 1 states are repre-

sented by the initial configurations alone (Tables 5 and 6). The
ordering of the E2N 1 1 and E2N 2 1 states as well as the relative
weight of the two configurations entering the E1

(2) and E1
(1) states

are determined primarily by the magnitude and especially the
sign of the quantity ∆HSL, defined in eqn. (12). For positively
charged perimeters (Table 5), excitation into the ‘Fermi’ (SO)
level takes less energy than excitation out of it, and ∆HSL < 0.
The E2N 2 1 state lies below E2N 1 1, and the configurations
describing the HO → SO excitations dominate the E1

(1) state.
For negatively charged perimeters (Table 6), excitation out of
the ‘Fermi’ level takes less energy, and ∆HSL > 0. The E2N 2 1

state lies above E2N 1 1 and the SO → LO excited configur-
ations dominate the E1

(2) state.

Table 4 4-Electron [4]annulene a

State Energy D MMM B

B1g
(2) 2[2] — 0 —

B2g
(1) [2] 0 0 0

A1g
(2) [2] 0 0 0

E1u
(2) c m2

2 0 22µ[∆21(B2g
(1),B1g

(2)) 1

∆21(E1u
(1),E1u

(2))/2]m1m2

E1u
(1) c 1 2[1] m2

1 0 22µ[∆21(B2g
(1),B1g

(2)) 2

∆21(E1u
(1),E1u

(2))/2]m1m2

a See footnotes in Table 3.
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Table 5 4N-Electron [n]annulene cations (n > 4N 1 2 and N > 1) a,b

State e Energy D d MMM c,d B d C d

E2N,g 0 — 2µ — —

A1g [2N] 0 0 0 0

E1u
(1) c 1 [2N 1 1] 1 [1]/tan β 2 ∆HSL/4 0 µ2/2 2 (µ1/2 2 µ) cos 2β 0 0

E2N 2 1,u c 1 [1] 1 ∆HSL/4 2m2(n,2N 2 1) 2[µ(n,N) 1 µ(n,N 2 1)] 0 2µm2(n,2N 2 1)

E2N 1 1,u c 1 [1] 2 ∆HSL/4 2m2(n,2N 1 1) 1[µ(n,N) 1 µ(n,N 1 1)] 0 22µm2(n,2N 1 1)

E1u
(2) c 1 [2N 1 1] 2 [1] tan β 2 ∆HSL/4 0 µ2/2 1 (µ1/2 2 µ) cos 2β 0 0

a See footnote a in Table 3. b β = (1/2) tan21 {2[1]/(∆HSL/2 1 [2N 2 1] 2 [2N 1 1])}. c See footnote c in Table 3. d Spectroscopic characteristics of
transitions from the E2N,g state. e Symbol u and g apply only if n is even.

Table 6 4N-Electron [n]annulene anions {4N > n 1 2 and N < (n 2 1)/2 [n odd] or N < (n 2 2)/2 [n even]} a,b

State e Energy D d MMM c,d B d C d

E2N,g 0 — 2µ — —

A1g [2N] 0 0 0 0

E1u
(2) c 1 [2N 1 1] 2 [1] tan β 2 ∆HSL/4 0 µ2/2 1 (µ1/2 2 µ) cos 2β 0 0

E2N 1 1,u c 1 [1] 2 ∆HSL/4 2m2(n,2N 1 1) µ(n,N) 1 µ(n,N 1 1) 0 22µm2(n,2N 1 1)

E2N 2 1,u c 1 [1] 1 ∆HSL/4 2m2(n,2N 2 1) 2µ(n,N) 2 µ(n,N 2 1) 0 2µm2(n,2N 2 1)

E1u
(1) c 1 [2N 1 1] 1 [1]/tan β 2 ∆HSL/4 0 µ2/2 2 (µ1/2 2 µ) cos 2β 0 0

a See footnote a in Table 3. b See footnote b in Table 5. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from the E2N,g state.
e Symbols u and g apply only if n is even.

Only transitions from the ground state to the E2N 1 1 and
E2N 2 1 states are allowed. Their relative intensity depends on
the ratio m(n,2N 1 1)/m(n,2N 2 1), and this is very close to
unity [eqn. (6)]. The A terms are determined by the differences
µ(n,N 1 1) 2 µ(n,N) for the E2N 1 1 state and µ(n,N) 2 µ(n,N 2
1) for the E2N 2 1 state. These differences are familiar from work
with (4N 1 2)-electron [n]annulenes, the former being equal to
µ2(n,N) and the latter to µ2(n,N 2 1).8 The former is positive
for positively charged perimeters and negative for negatively
charged ones. The latter is negative except for highly charged
anionic perimeters. Thus, the signs of both A terms are posi-
tive for cations, but they differ for anions, with A(G →
E2N 1 1) < 0 and A(G → E2N 2 1) > 0, unless their charge is
high enough to make both terms negative. The B terms vanish.
The C terms are always positive for the G → E2N 1 1 and
negative for the G → E2N 2 1 transition.

Since the charged perimeters are either non-alternant (n odd)
or alternant but not self-paired (n even), their states cannot be
labeled by the eigenvalues of the pairing operator.21–24 We use
the labels (1) and (2) in a less rigorous sense to indicate add-
ition or cancellation of the contributions to the transition
moment from the ground state that are provided by the con-
figurations that enter into the excited state, and in some cases,
merely to distinguish states of equal symmetry.

4.2 4N-Electron [4N 1 2]annulenes (n > 6)
In these dications (Table 7) the irreducible representations
ε2N 1 1 and ε2(2N 1 1) of the C4N 1 2 group coincide and are
labeled b. Two non-degenerate states of B symmetry are found
instead of the usual E2N 1 1 state. The properties of the E2N 2 1

states are preserved and the predictions of the previous discus-
sion hold. The dipole strength of the split state is distributed
equally between the two new B states. Their mutual magnetic
mixing causes quite large B terms for both, positive for the
lower and negative for the upper state. The C terms of both are
positive.

Table 7 also lists the spectroscopic properties of the A1g sing-

let state since this appears to be the ground state of some
systems derived from the analogous dianion perimeters (see
section 4.3).28 Only the transitions into the lower E1

(1) and upper
E1

(2) states have non-vanishing dipole strengths. The former has
a small and the latter a large positive A term.

4.3 4N-Electron [4N 2 2]annulenes (n > 6)
In these dianions (Table 8) the irreducible representations
ε2N 2 1 and ε2(2N 2 1) of the C4N 1 2 group coincide, and two non-
degenerate states of B symmetry are found instead of the usual
E2N 2 1 state. The usual general results of Section 4.1 hold for
the E2N 1 1 state. The two B states share equally the dipole
strength of the parent E2N 2 1 state. The lower one has a neg-
ative and the upper one a positive B term. Their C terms are
negative.

Since certain real molecules derived from perimeters of this
kind appear to have the A1g singlet as the ground state,28 we
have also listed in Table 8 the spectroscopic properties for exci-
tation out of this state. Only the transitions into the E1

(2) and E1
(1)

states have non-vanishing dipole strengths. The former has a
small and the latter a large negative A term. The B term of the
A1g → E1

(2) transition is negative, that of the A1g → E1
(1)

transition is positive.
In the perfect alternant pairing approximation, in which only

the AO matrix elements of ì̂  between nearest neighbors are
kept, the MCD spectra of the dication and the dianion of an
[n]annulene are mirror images of each other, as required by a
general theorem.25

4.4 4-Electron [n]annulenes (n > 6)
In these cations (Table 9), the HO level is non-degenerate and
the ε2(2N 2 1) configurations are absent. Three doubly degener-
ate excited states are obtained in addition to the ground state
(E2) and the first excited state (A). They are E1

(2), E3 (≡E2N 1 1)
and E1

(1). The two components of the E3 state are Ψ2N
N 1 1 and

ΨN
2N 2 1.
The transition G → E3 is allowed and shows the usual A
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Table 7 4N-Electron [4N 1 2]annulene dications (N > 1) a,b

State Energy D d MMM c,d B d C d D e B e

E2N,g 0 — 2µ — — 0 0

A1g [2N] 0 0 0 0 — —

E1u
(1) c 1 [1]/tan β 1 [2N 1 1] 2 ∆HSL/4 0 µ2/2 1 (µ 2 µ1/2) ×

cos 2β
0 0 [m2

1 2 2m1m2 cos 2β 1 2
m2

2 1 (m2
1 2 m2

2) sin 2β]/2
∆21(E(1)

1u ,E (2)
1u )(2µ 2 µ1) ×

cos β sin β [2m1m2 sin 2β 1
(m2

1 2 m2
2) cos 2β]/2

B1u
(2) c 1 [1] 2 [2N] 2 ∆HSL/4 2 [2N 1 1] m2(n,2N 1 1) 0 2∆21(B2u

(1),B1u
(2)) × 2

m2(n,2N 1 1) ×
[µ 1 (µ1 1 µ2)/2]

µm2(n,2N 1 1) 0 0

E2N 2 1,u c 1 [1] 1 ∆HSL/4 2m2(n,2N 2 1) 2[µ 1 (µ1 2 µ2)/2] 0 2µm2(n,2N 2 1) 0 0

E1u
(2) c 2 [1] tan β 2 ∆HSL/4 1 [2N 1 1] 0 µ2/2 2 (µ 2 µ1/2) ×

cos 2β
0 0 [m2

1 1 2m1m2 cos 2β 1
m2

2 2 (m2
1 2 m2

2) sin 2β]/2
∆21(E (1)

1u ,E (2)
1u )(2µ 2 µ1) ×

cos β sin β [2m1m2 sin 2β 1
(m2

1 2 m2
2) cos 2β]/2

B2u
(1) c 1 [1] 1 [2N] 2 ∆HSL/4 1 [2N 1 1] m2(n,2N 1 1) 0 ∆21(B2u

(1),B1u
(2)) × 2

m2(n,2N 1 1) ×
[µ 1 (µ1 1 µ2)/2]

µm2(n,2N 1 1) 0 0

a See footnote a in Table 3. b See footnote b in Table 5. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from the E2N,g state. e Spectroscopic characteristics of transitions from the A1g state.

Table 8 4N-Electron [4N 2 2]annulene dianions (N > 2) a,b

State Energy D d MMM c,d B d D e B e

E2N,g 0 — 2µ — 0 0

A1g [2N] 0 0 0 — —

E1u
(2) c 2 [1] tan β 2 ∆HSL/4 1 [2N 1 1] 0 µ2/2 2 (µ 2 µ1/2) cos 2β 0 [m2

1 1 2m1m2 cos 2β 1 m2
2 2

(m2
1 2 m2

2) sin 2β]/2
∆21(E1u

(1),E1u
(2))(2µ 2 µ1) ×

sin 2β [2m1m2 sin 2β 1
(m2

1 2 m2
2) cos 2β]/4

B1u
(2) c 1 [1] 2 [2N] 1 ∆HSL/4 2 [2N 2 1] m2(n,2N 2 1) 0 ∆21(B2u

(1),B1u
(2))m2(n,2N 2 1) ×

[µ 1 (µ1 2 µ2)/2]
0 0

E2N 1 1,u c 1 [1] 2 ∆HSL/4 2m2(n,2N 1 1) µ 1 (µ1 1 µ2)/2 0 0 0

E1u
(1) c 1 [1]/tan β 2 ∆HSL/4 1 [2N 1 1] 0 µ2/2 1 (µ 2 µ1/2) cos 2β 0 [m2

1 2 2m1m2 cos 2β 1 m2
2 1

(m2
1 2 m2

2) sin 2β]/2
2∆21(E1u

(1),E1u
(2))(2µ 2 µ1) ×

sin 2β [2m1m2 sin 2β 1
(m2

1 2 m2
2) cos 2β]/4

B2u
(1) c 1 [1] 1 [2N] 1 ∆HSL/4 1 [2N 2 1] m2(n,2N 2 1) 0 2∆21(B2u

(1),B1u
(2))m2(n,2N 2 1) ×

[µ 1 (µ1 2 µ2)/2]
0 0

a See footnote a in Table 3. b See footnote b in Table 5. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from the E2N,g state. e Spectroscopic characteristics of transitions from the A1g state.
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Table 9 4-Electron [n]annulene cations (n > 6) a,b

State e Energy D d MMM c,d B d C d

E2g 0 — 2µ — —

A1g [2] 0 0 0 0

E1u
(1) c 1 [1]/tan β 2 ∆HSL/4 1 [3] 2m2(n,1) cos2 β 2µ cos 2β 2 µ(n,2) sin2 β 1∆21(E1u

(2),E1u
(1)) ×

[2µ 2 µ(n,2)] ×
sin2 2βm2(n,1)/2

2µ cos2 βm2(n,1)

E3u c 1 [1] 2 ∆HSL/4 2m2(n,3) µ 1 µ(n,2) 0 22µm2(n,3)

E1u
(2) c 2 [1] tan β 2 ∆HSL/4 1 [3] 2m2(n,1) sin2 β µ cos 2β 2 µ(n,2) cos2 β 2∆21(E1u

(2),E1u
(1)) ×

[2µ 2 µ(n,2)] ×
sin2 2βm2(n,1)/2

2µ sin2 βm2(n,1)

a See footnote a in Table 3. b β = (1/2) tan21 {2[1]/(∆HSL/2 1 [1] 2 [3])}. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from
the E2g state. e Symbols u and g apply only if n is even.

Table 10 4N-Electron [2N 1 2]annulene anions (n > 6) a,b

State Energy D d MMM c,d B d C d

E2g 0 — 2µ — —

A1g [2] 0 0 0 0

E1u
(2) c 2 [1] tan β 2

∆HSL/4 1
[2N 1 1]

2m2(n,2N 1 1) cos2 β µ cos 2β 1 2
µ(n,N 2 1) sin2 β

∆21(E1u
(1),E1u

(2)) × 2
[2µ 2 µ(n,N 2 1)] ×
sin2 2βm2(n,2N 1 1)/2

2µ cos2 βm2(n,2N 1 1)

E3u c 1 ∆HSL/4 1 [1] 2m2(n,2N 2 1) 2[µ 1 µ(n,N 2 1)] 0 2µm2(n,2N 2 1)

E1u
(1) c 1 [1]/tan β 2

∆HSL/4 1
[2N 1 1]

2m2(n,2N 1 1) sin2 β 2µ cos 2β 1
µ(n,N 2 1) cos2 β

∆21(E1u
(1),E1u

(2)) × 2
[2µ 2 µ(n,N 2 1)] ×
sin2 2βm2(n,2N 1 1)/2

2µ sin2 βm2(n,2N 1 1)

a See footnote a in Table 3. b β = (1/2) tan21 {2[1]/(∆HSL/2 2 [1] 1 [3])}. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from
the E2g state.

and C terms. In addition, the transitions G → E1
(2) and

G → E1
(1) have non-vanishing dipole strengths. They have

positive A terms, dominated by the µ(n,N) contributions to
their magnetic moments, and negative C terms. The B terms of
the E1

(2) and E1
(1) states are due to their mutual magnetic mixing.

The sign of the E1
(2) B term is equal to the sign of

2µ(n,N) 2 µ(n,N 1 1), which is easily deduced as a function
of n and N from the algebraic formulae given in the Appendix
of ref. 8. The sign of the E1

(1) B term is the opposite.

4.5 4N-Electron [2N 1 2]annulenes (n > 6)
In these anions (Table 10), the LO level is non-degenerate and
the ε2N 1 1 configurations are absent. Three doubly degenerate
excited states, E1

(2), E2N 2 1 and E1
(1) are obtained in addition to

the ground state and the first excited state. The components of
the E2N 2 1 state are ΨN

2N 1 1 and Ψ2N
N 2 1.

The G → E2N 2 1 transition is allowed and shows the usual
A and C terms. In addition, the transitions G → E1

(2) and
G → E1

(1) have non-vanishing dipole strengths. They have
negative A terms, dominated by the µ(n,N) contributions to
their magnetic moments, and positive C terms. The B terms of
the G → E1

(2) and G → E1
(1) transitions are due to the

mutual magnetic mixing of their excited states. As 2µ(n,N) 2
µ(n,N 2 1) is always negative, the B term for the lower state is
always positive and that of the upper state is always negative. In
the perfect alternant pairing approximation, the MCD spectra
of a 4-electron [n]annulene polycation and a (2n 2 4)-electron
[n]annulene polyanion are mirror images of each other.25

4.6 4-Electron [6]annulene
Benzene dication (Table 11) differs from a general 4-electron
[n]annulene in that the representations ε2N 1 1 (ε3) and ε2(2N 1 1)

(ε23) coincide to yield B in the C6 symmetry group. The E2N 1 1

state splits into a lower B(2) and a higher B(1) state, as it does in
other 4N-electron [4N 1 2]annulenes. The properties of the E1

(2)

and E1
(1) states remain those of the general system, but the

dipole strength and the C terms of the former E2N 1 1 state are
split equally between the B(2) and B(1) states. Transitions
G → B(2) and G → B(1) show nonvanishing B terms due to
their mutual magnetic mixing, positive for B(2) and negative for
B(1).

4.7 8-Electron [6]annulene
In benzene dianion (Table 12) the coalescence of the irreducible
representations ε3 = ε2N 2 1 and ε23 = ε2(2N 1 1) into B again
leads to the splitting of the E2N 2 1 state present in the general
(2n 2 4)-electron [n]annulene. The dipole strength and the C
terms are distributed equally to the resulting lower B(2) and
upper B(1) states, which are the same as in general 4N-electron
[4N 2 2]annulenes. Their mutual magnetic mixing produces a
negative B term for the B(2) state and a positive one for B(1). The
properties of the other states are as described for the general
system. The MCD spectra of C6H6

21 and C6H6
22 are again

paired in the perfect alternant pairing approximation.25

4.8 4N-Electron [4N 1 1]annulenes (n > 6)
These antiaromatic monocations of odd-membered perimeters
(Table 13) differ from general charged systems in that the repre-
sentation ε2(2N 1 1) is the same as ε2N in the C4N 1 1 symmetry
group. The high-energy configuration ΨN

2N 2 1 then interacts
with the ground configuration ΨN

2N, as do the respective complex
conjugates. The E2N

(2) ground state thus has an out-of-phase
contribution from ΨN

2N (ΨN
2N) and ΨN

2N 2 1 (Ψ2N
N 1 1). The E1

(2), E1
(1)

and E2N 2 1 states are not affected. The spectroscopic properties
of the excited states change slightly.

The symmetry-allowed transitions are G → E2N 2 1 and
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Table 11 4-Electron [6]annulene dication a,b

State Energy D d MMM c,d B d C d

E2g 0 — 2µ(6,1) — —

A1g [2] 0 0 0 0

E1u
(1) c 1 [1]/tan β 2

∆HSL/4 1 [3]
2m2(6,1) cos2 β 2µ(6,1) cos 2β 2

µ(6,2) sin2 β
1∆21(E1u

(2),E1u
(1))[µ(6,1) 2 (1/2)µ(6,2)] ×

sin2 2βm2(6,1)
2µ(6,1) cos2 βm2(6,1)

B1u
(2) c 1 [1] 2 [2] 2 [3] 2

∆HSL/4
m2(6,3) 0 2∆21(B2u

(1),B1u
(2))[µ(6,1) 1 µ(6,2)] ×

m2(6,3)
2µ(6,1)m2(6,3)

E1u
(2) c 2 [1] tan β 2

∆HSL/4 1 [3]
2m2(6,1) sin2 β µ(6,1) cos 2β 2

µ(6,2) cos2 β
2∆21(E1u

(2),E1u
(1))[µ(6,1) 2 (1/2)µ(6,2)] ×

sin2 2βm2(6,1)
2µ(6,1) sin2 βm2(6,1)

B2u
(1) c 1 [1] 1 [2] 1 [3] 2

∆HSL/4
m2(6,3) 0 ∆21(B2u

(1),B1u
(2))[µ(6,1) 1 µ(6,2)] ×

m2(6,3)
2µ(6,1)m2(6,3)

a See footnote a in Table 3. b β = (1/2) tan21 {2[1]/(∆HSL/2 1 [1] 2 [3])}. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from
the E2g state.

Table 12 8-Electron [6]annulene dianion a,b

State Energy D d MMM c,d B d C d

E2g 0 — 2µ(6,2) — —

A1g [4] 0 0 0 0

E1u
(2) c 1 [1] (1 2 tan β) 2 ∆HSL/4 2m2(6,5) cos2 β µ(6,2) cos 2β 1

µ(6,1) sin2 β
2∆21(E1u

(1),E1u
(2))[µ(6,2) 2

µ(6,1)/2] sin2 2βm2(6,5)
22µ(6,2) cos2 βm2(6,5)

B1u
(2) c 1 [1] 2 [3] 2 [4] 1 ∆HSL/4 m2(6,3) 0 2∆21(B2u

(1),B1u
(2))[µ(6,2) 1

µ(6,1)]m2(6,3)
µ(6,2)m2(6,3)

E1u
(1) c 1 [1](1 1 1/tan β) 2 ∆HSL/4 2m2(6,5) sin2 β 2µ(6,2) cos 2β 1

µ(6,1) cos2 β
∆21(E1u

(1),E1u
(2))[µ(6,2) 2

µ(6,1)/2] sin2 2βm2(6,5)
22µ(6,2) sin2 βm2(6,5)

B2u
(1) c 1 [1] 1 [3] 1 [4] 1 ∆HSL/4 m2(6,3) 0 2∆21(B2u

(1),B1u
(2))[µ(6,2) 1

µ(6,1)]m2(6,3)
µ(6,2)m2(6,3)

a See footnote a in Table 3. b See footnote b in Table 10. c See footnote c in Table 3. d Spectroscopic characteristics of transitions from the E2g state.

Table 13 4N-Electron [4N 1 1]annulene monocations (N > 1) a,b

State Energy D d MMM c,d B d C d

E2N
(2) √2[2N ] tan α — (3 cos2 α 2 1)µ 2

(1/2)(µ1 1 µ2) sin2 α
— —

A [2N ] 0 0 0 0

E1
(1) c 2 ∆HSL/4 1 [1]/tan β 1

[2N 1 1]
0 µ2/2 2 cos 2β(µ1/2 2 µ) 0 0

E2N21 c 1 ∆HSL/4 1 [1] 2m2(n,2N 2 1) ×
cos2 α

2[µ 1 (µ1 2 µ2)/2] ∆21(E2N
(1),E2N

(2)) sin2 2α ×
m2(n,2N 2 1)(1/2)[3µ 1
(µ1 1 µ2)/2]

[(3 cos2 α 2 1)µ 2 (1/2) ×
(µ1 1 µ2) sin2 α] ×
m2(n,2N 2 1) cos2 α

E2N
(1) 2√2[2N ]/tan α 2m2(n,N 1 1) ×

cos2 2α
2[(3 sin2 α 2 1)µ 2

(1/2)(µ1 1 µ2) cos2 α]
0 2[(3 cos2 α 2 1)µ 2(1/2) ×

(µ1 1 µ2) sin2 α] m2(n,2N 1
1) cos2 2α

E1
(2) c 2 ∆HSL/4 2 [1] tan β 1

[2N 1 1]
0 µ2/2 1 cos 2β(µ1/2 2 µ) 0 0

a See footnote a in Table 3. b α = (1/2) tan21 {22√2[2N ]/(c 2 ∆HSL/4 1 [1])}; β = (1/2) tan21 {2[1]/(∆HSL/2 1 [2N 2 1] 2 [2N 1 1])}. c See footnote
c in Table 3. d Spectroscopic characteristics of transitions from the E2N

(2) state.

G → E2N
(1). Both have a positive A term. The former has a

negative and the latter a positive C term. The former has a
negative B term due to magnetic mixing of the two E2N states,
while the B term of the latter vanishes.

4.9 4N-Electron [4N 2 1]annulenes (n > 6)
These antiaromatic monoanions of odd-membered perimeters
(Table 14) differ from general charged systems in that ε2(2N 2 1)

is the same representation as ε2N in the C4N 2 1 symmetry group.
The degenerate E2N

(2) ground state acquires an in-phase ad-
mixture of the high-energy ΨN

2N 1 1, Ψ
2N
N 2 1 configurations. The

excited states E1
(2), E1

(1) and E2N 1 1 are not affected.
The symmetry-allowed transitions are G → E2N 1 1 and

G → E2N
(1). The C term of the former is positive, that of

the latter negative. The B term of the former, due to magnetic
mixing of the E2N states, is positive. The B term of the latter
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Table 14 4N-Electron [4N 2 1]annulene monoanions a,b

State Energy D d MMM c,d B d C d

E2N
(2) 2√2[2N ] tan α — (3 cos2 α 2 1)µ 2 (1/2) ×

(µ1 2 µ2) sin2 α
— —

A [2N ] 0 0 0 0

E1
(2) c 2 ∆HSL/4 2 [1] tan β 1

[2N 1 1]
0 µ2/2 2 cos 2β(µ 2 µ1/2) 0 0

E2N11 c 2 ∆HSL/4 1 [1] 2m2(n,2N 1 1) ×
cos2 α

µ 1 (1/2)(µ1 1 µ2) 2∆21(E2N
(1),E2N

(2))(1/2) ×
sin2 2α m2(n,2N 1 1) ×
[3µ 1 (µ1 2 µ2)/2] ×
[(µ1 2 µ2) sin2 α]

2[(3 cos2 α 2 1)µ 2
(1/2)(µ1 2 µ2)sin2α]
m2(n,2N 1 1) ×
cos2 α

E2N
(1) √2[2N ]/tan α 2m2(n,2N 2 1) ×

cos2 2α
(3 sin2 α 2 1)µ 2 (1/2) ×
(µ1 2 µ2) cos2 α

0 [(3 cos2 α 2 1)µ 2
(1/2)(µ1 2 µ2) ×
sin2 α]m2(n,2N 2 1) ×
cos2 2α

E1
(1) c 2 ∆HSL/4 1 [2N 1 1] 1

[1]/tan β
0 µ2/2 1 cos 2β(µ 2 µ1/2) 0 0

a See footnote a in Table 3. b α = (1/2) tan21 {2√2[2N ]/(c 1 ∆HSL/4 1 [1])}; β = (1/2) tan21 {2[1]/(∆HSL/2 1 [2N 2 1] 2 [2N 1 1])}. c See footnote
c in Table 3. d Spectroscopic characteristics of transitions from the E2N

(2) state.

Table 15 2N-Electron [2N 1 1]annulene anions (N > 2) a,b

State Energy D d MMM c,d B d C d

E1
(2) 2√2[1] tan α — (2µ cos 2α 1 sin2 α)[µ 1 µ(n,N 2 1)] — —

A [2N ] DA
e 0 BA

f 2(1/2)µ(1 1 cos2 α) × DA
e

E2N21 E(SO) 2 E(HO) 1 [1] DE
g 2[µ 1 µ(n,N 2 1)] BE

h (1/2)µ(1 1 cos2 α) × DE
g

E1
(1) √2[1]/tan α 0 (2µ cos 2α 2 cos2 α)[µ 1 µ(n,N 2 1)] 0 0

a See footnote a in Table 3. b α = (1/2) tan21 (2√2[1]/{E(SO) 2 E(HO) 1 [2N 2 1]}). c See footnote c in Table 3. d Spectroscopic characteristics of
transitions from the E1

(2) state. e DA = [cos α √2 m(n,2N 1 1) 2 sin α m(n,2N 2 1)]2. f BA = ∆21(E1
(1),E1

(2))[23µ 1 µ(n,N 2 1)](1/2) sin 2α ×
{sin 2α[m2(n,2N 1 1) 2 (1/2)m2(n,2N 2 1)] 1 cos 2α √2m(n,2N 1 1) × m(n,2N 2 1)}. g DE = [cos α √2m(n,2N 2 1) 2 sin α m(n,2N 1 1)]2. h BE =
2∆21(E1

(1),E1
(2))[23µ 1 µ(n,N 2 1)](1/2) sin 2α × {sin 2α[m2(n,2N 2 1) 2 (1/2)m2(n,2N 1 1)] 1 cos 2α √2m(n,2N 1 1) × m(n,2N 2 1)}.

Table 16 4-Electron [3]annulene monoanion a,b

State Energy D d MMM c,d B d C d

E1
(2) 2√2[1] tan α — µ(1 2 3 cos2 α) — —

A [2] [√2 cos α m(3,3) 2 sin α m(3,1)]2 0 BA
e CA

f

E1
(1) √2[1]/tan α [√2 cos α m(3,1) 2 (1/2) sin 2α × m(3,3)]2 2µ(1 2 3 sin2 α) BE

g CE
h

a See footnote a in Table 3. b α = (1/2) tan21 (2√2[1]/{E(SO) 2 E(HO) 1 [1]}). c See footnote c in Table 3. d Spectroscopic characteristics of transi-
tions from the E1

(2) state. e BA = 2∆21(E1
(1),E1

(2))(3/2)µ sin 2α × {sin 2α[m2(3,3) 2 (1/2)m2(3,1)] 1 cos 2α √2m(3,3)m(3,1)}. f CA = (1/2)µ(1 2
3 cos2 α)[√2 cos α m(3,3) 2 sin α m(3,1)]2. g BE = 2∆21(E1

(1),E1
(2)) × (3/2)µ sin 2α[2√2m(3,1) cos 2α 1 (1/2) sin 2α × m(3,3)]m(3,3). h CE = 2(1/2) ×

µ(1 2 3 cos2 α)[(1/2) sin 2α m(3,3) 2 √2 cos 2α m(3,1)]2.

vanishes. The signs of the B and C terms are just the opposite
of those obtained for the 4N-electron [4N 1 1]annulenes. The
sign of the A term of the G → E2N 1 1 transition is negative
for small n and positive for large n, and the A term of the
G → E2N

(1) transition is positive.

4.10 4N-Electron [2N 1 1]annulenes (n > 6)
In these systems (Table 15) the SO level corresponds to the
highest energy pair of orbitals and no LO level is present, leav-
ing only the HO → SO excitations. The irreducible represen-
tations ε2N and ε22N are equal to ε21 and ε1, respectively, and the
low-energy configuration ΨN

2N interacts with the high-energy
configuration Ψ2N

2N 1 1, as do their complex conjugates. The high-
energy configurations mix in-phase into the E1

(2) ground state,
while the low-energy configurations mix out-of-phase into the
E1

(1) excited state.
This configuration mixing introduces a highly unusual non-

vanishing dipole strength and a positive C and negative A term

for the transition G → A. The G → E2N 2 1 transition is
electric dipole allowed, with negative A and C terms.

4.11 4-Electron [3]annulene
The cyclopropenide anion (Table 16) represents a special case
of 4N-electron [2N 1 1]annulene because the LO level is miss-
ing and the HO level is non-degenerate. Only five configurations
are left. The wavefunctions and spectroscopic properties are
those of a general 4N-electron [2N 1 1]annulenes, except that
the E2N 2 1 state is absent.

4.12 4-Electron [5]annulene
The cyclopentadienyl cation (Table 17) differs from the general
4-electron [n]annulene only in the fact that E2N and E22N 1 1

coincide in the C5 symmetry group, causing ΨN
2N and ΨN

2N 2 1,
and their complex conjugates, to interact. The interaction yields
a E2

(2) ground state and an excited E2
(1) state. The other states are

not affected.
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Table 17 4-Electron [5]annulene a,b

State Energy D d MMM c,d B d C d

E2
(1) √2[2] tan α — µ(5,1)(3 cos2 α 2 1) 2 µ(5,2) sin2 α — —

A [2] 0 0 0 0

E1
(1) c 2 ∆HSL/4 1 [1]/tan β 1 [2] [cos α cos β√2m(5,1) 2

sin α sin β m(5,5)]2
2µ(5,1) cos 2β 2 µ(5,2) sin2 β B11

e C11
e

E2
(2) 2√2[2]/tan α 2 cos2 2α m2(5,3) 2µ(5,1)(3 sin2 α 2 1) 1 µ(5,2) cos2 α 0 C22

e

E1
(2) c 2 ∆HSL/4 2 [1] tan β 1 [2] [cos α sin β√2m(5,1) 1

sin α cos β m(5,5)]2
µ(5,1) cos 2β 2 µ(5,2) cos2 β B12

e C12
e

a See footnote a in Table 3. b β = (1/2) tan21{2[1]/(∆HSL/2 1 [1] 2 [2])}; α = (1/2) tan21 {22√2[2]/(c 2 ∆HSL/4 1 [1])}. c See footnote c in Table 3.
d Spectroscopic characteristics of transitions from the E2

(1) state. e The following abbreviations are used: B12 = ∆21(E2
(2),E2

(1))(1/2) ×
sin 2α[3µ(5,1) 1 µ(5,2)][cos α sin β√2m(5,1) 1 sin α cos βm(5,5)][2cos β cos αm(5,5) 1 sin β sin α√2m(5,1)] 2 ∆21(E1

(1),E1
(2))(1/2) sin 2β[2µ(5,1) 2

µ(5,2)](cos α sin β√2m(5,1) 1 sin α cos βm(5,5)][2cos α cos β√2m(5,1) 1 sin α sin βm(5,5)]; B11 = ∆21(E1
(1),E1

(2))(1/2) sin 2β[2µ(5,1) 2 µ(5,2)] ×
[cos α sin β√2m(5,1) 1 sin α cos βm(5,5)][2cos α cos β√2m(5,1) 1 sin α sin βm(5,5)] 2 ∆21(E2

(2),E2
(1))(1/2) sin 2α[3µ(5,1) 1 µ(5,2)][2cos α cos β ×

√2m(5,1) 1 sin α sin βm(5,5)][sin α cos β√2m(5,1) 1 cos α sin βm(5,5)]; C12 = (1/2)[µ(5,1)(3 cos2 α 2 1) 2 sin2 αµ(5,2)][cos α sin β√2m(5,1) 1
sin α cos βm(5,5)]; C22 = 2[µ(5,1)(3 cos2 α 2 1) 2 sin2 αµ(5,2)]cos2 2αm2(5,3); C11 = (1/2)[µ(5,1)(3 cos2 α 2 1) 2 sin2 αµ(5,2)][2cos α cos β√2-
m(5,1) 1 sin α sin βm(5,5)]2.

The modified ground state still has a vanishing transition
moment for G → A. All other transitions are allowed and
show positive A terms for the E1

(2) and E1
(1) states and a negative

A term for the E2
(2) state. The signs of the C terms are the

opposite of those of the A terms. The B terms of the transitions
to the lower E1

(1) and upper E1
(2) states are due to their mutual

magnetic mixing. The former is negative and the latter positive.

5. Magnetic circular dichroism of antiaromatic
perturbed 4N-electron [n]annulenes

The procedure that shall be used to describe the structural
factors which distinguish the π system of an actual molecule
from that of the idealized perimeter has already proven its value
in the case of aromatic π systems.8–11 Its most important simpli-
fying features are that only the one-electron part of the per-
turbation and only the mixing between degenerate orbitals are
considered.

Those perturbations of a 4N-electron [n]annulene perimeter
which preserve its biradicaloid and antiaromatic nature are
considered next, while those stronger perturbations which con-
vert it into ordinary (unaromatic) molecules are considered in
Parts 2 and 3. Examples of perturbations considered now are
geometrical distortions, attachment of weakly perturbing sub-
stituents, and other minor modifications that split the degener-
acy of the SO level only very weakly or not at all, and also those
strong perturbations, such as cross-links, whose symmetry is
such that the degeneracy of the SO level is preserved.

The Hamiltonian matrix of a perturbed system differs in sev-
eral respects from that of the parent antiaromatic annulene
given in expression (9). Considering only the one-electron part
of the perturbation and representing it by the operator Â = oi âi,
these are: (i) changes in the energy zero and in c, of little interest
presently, (ii) a change in ∆HSL, (iii) appearance of non-zero
values for the perturbation parameters h, s and l.

The change in ∆HSL is given by the diagonal elements of â,
eqn. (20).

2〈ψN |â |ψN〉 2 〈ψN 2 1 |â |ψN 2 1〉 2 〈ψN 1 1 |â |ψN 1 1〉 =
2sD 2 hD 2 lD (20)

The perturbation parameters h, s and l are given by the off-
diagonal elements of â, eqn. (21).

h = 〈ψN 2 1 |â |ψ2N 1 1〉 = ∆Heiη/2

s = 〈ψN |â |ψ2N〉 = ∆Seiσ/2

l = 〈ψN 1 1 |â |ψ2N 2 1〉 = ∆Leiλ/2 (21)

The real and positive quantities ∆H, ∆S and ∆L are given
by the splitting of the HO, SO and LO orbital pairs, respect-
ively, under the effect of the perturbation, while the phase
angles η, σ and λ specify its symmetry properties. A detailed
discussion of these quantities will be postponed until Parts 2
and 3.

It is useful to consider separately the effects of high-
symmetry perturbations which preserve a symmetry axis of
order three or higher, and of low-symmetry perturbations,
which do not. High-symmetry perturbations can be classified
further according to their effect on ∆H, ∆S and ∆L, i.e. their
effect on the degeneracy of the HO, SO and LO levels. Table 18
shows the effect of reducing the order of the symmetry axis
from n to n/m.

5.1 High-symmetry antiaromatic biradicals
Reduction of symmetry from Cn to Cn/m which keeps SO
degenerate (∆S = 0) converts a 4N-electron [n]annulene perim-
meter into another antiaromatic perfect biradical. Within the
present model, a perturbation of this symmetry, for which
∆S = 0, cannot change the nature of the lowest three singlets
regardless of its strength, since the 3 × 3 matrix block remains
independent of the perturbation and is not coupled to the
remaining 8 × 8 block of the matrix except in the case of singly
charged perimeters, and even there the coupling is nearly
negligible.

For certain limiting cases, an explicit solution for wave
functions and spectroscopic observables, including MCD,
is easy. This happens when, in addition to ∆S = 0, either ∆L = 0
or ∆H = 0 or ∆L = ∆H holds, with either η = λ or η = λ 1 π.
The vanishing of ∆L or ∆H may be imposed by geometrical
symmetry (Table 18). The condition ∆L = ∆H may be im-
posed to a good approximation in systems which are alternant,
or to first order in perturbation theory in systems derived
by a purely even or purely odd perturbation 5 of an uncharged
antiaromatic perimeter. We shall not present the detailed
solutions here.

In the general case, however, the solutions cannot be written
down explicitly and the matrix must be diagonalized numeric-
ally. It may still be possible to understand trends in the results
by comparison with related simply soluble limiting cases.

Biradicals of this type are still subject to a Jahn–Teller distor-
tion if their singlet ground state is degenerate and to a pseudo-
Jahn–Teller distortion if it is not.

5.2 High-symmetry antiaromatic biradicaloids
Reduction of symmetry from Cn to Cn/m (n/m >3) which
splits the degeneracy of SO (∆S ≠ 0, ∆H = ∆L = 0, Table 18)
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Table 18 Lifting of orbital degeneracy in [n]annulenes upon symmetry reduction Cn → Cn/m (n/m > 3)

Charge required a

(CH)n n/m k b ∆H ≠ 0 ∆S ≠ 0 ∆L ≠ 0

C8H8 4 2 42 0 41
C9H9 3 3 72 32 11
C12H12 3, 6 3 42 0 41
C12H12 4 2, 4 0, 82 41, 42 81, 0
C15H15 3 3, 6 12, 132 31, 92 71, 52
C15H15 5 5 92 52 12
C16H16 4 2, 4, 6 41, 42, 122 81, 0, 82 121, 41, 42
C16H16 8 4 42 0 41
C18H18 3, 6 3, 6 21, 102 61, 62 101, 22
C20H20 4 2, 4, 6, 8 81, 0, 82, 162 121, 41, 42, 122 161, 81, 0, 82
C20H20 5, 10 5 42 0 41
C21H21 3 3, 6, 9 51, 72, 192 91, 32, 152 131, 11, 112
C21H21 7 7 112 72 32

a The charge on the annulene required to achieve ∆H ≠ 0, ∆S ≠ 0 or ∆L ≠ 0. b Subscript of the orbital pairs ψk, ψ2k that split.

Table 19 Antiaromatic high-symmetry perturbed 4N-electron [4N ]annulenes with σ = 0 (weakly heterosymmetric biradicaloids, ∆H = ∆L =
∆HSL = 0, 0 < ∆S < 2[2N ]) a,b

State Energy and symmetry at ∆S = 0 Energy D d MMM c B d

G 2[2N ] B1g
(2) 2[2N ] — 0 —

S 1[2N ] B2g
(1) [2N ] 2 ∆S 0 0 0

D 1[2N ] A1g
(2) [2N ] 1 ∆S 0 0 0

N c 1 [2N 2 1] 2 [1] E1u
(2) c 1 [2N 2 1] 2 [1] 2 (∆S/2) tan β m1

2 sin2 β µ2/2 BN
DG 1 BN

SG 1 BN
PN 1 BN

P9N
e

P c 2 [2N 2 1] 1 [1] E(2)
2N 1 1,u c 2 [2N 2 1] 1 [1] 2 (∆S/2) tan γ m2

2 cos2 γ µ2/2 BP
DG 1 BP

SG 1 BP
NP 1 BP

N9P
f

N9 c 1 [2N 2 1] 1 [1] E(1)
2N 1 1,u c 1 [2N 2 1] 1 [1] 1 (∆S/2) tan β m1

2 cos2 β µ2/2 BN9
DG 1 BN9

SG 1 BN9
PN9 1 BN9

P9N9
g

P9 c 1 [2N21] 1 [1] E1u
(1) c 1 [2N 2 1] 1 [1] 1 (∆S/2) tan γ m2

2 sin2 γ µ2/2 BP9
DG 1 BP9

SG 1 BP9
NP9 1 BP9

N9P9
h

a See footnote a in Table 3. b β = (1/2) tan21 (∆S/2[1]); γ = (1/2) tan21 (∆S/2[2N 2 1]); β9 = β 1 π/4; γ9 = γ 1 π/4. c See footnote c in Table 3. d Spectro-
scopic characteristics of transitions from the G state. e BN

DG = √2∆21(D,G)µm1m2 cos β9 sin β; BN
SG = 2√2∆21(S,G)µm1m2 sin β9 sin β; BN

PN =
2∆21(P,N) × [(µ1/2) sin (β 1 γ) 1 µ sin (β 2 γ)]m1m2 sin β cos γ; BN

P9N = 2∆21(P9,N)[2(µ1/2) cos (β 1 γ) 1 µ cos (β 2 γ)]m1m2 sin β sin γ. f BP
DG =

2√2∆21(D,G) × µm1m2 cos γ cos γ9; BP
SG = 2√2∆21(S,G)µm1m2 cos γ sin γ9; BP

NP = ∆21(P,N)[(µ1/2) sin (β 1 γ) 1 µ sin (β 2 γ)]m1m2 sin β cos
γ = 2BN

PN; BP
N9P = 2∆21(N9,P)[(µ1/2) cos (β 1 γ) 1 µ cos (β 2 γ)]m1m2 cos β cos γ. g BN9

DG = 2√2∆21(D,G)µm1m2 sin β9 cos β; BN9
SG = 2√2∆21(S,G)

µm1m2 cos β9 cos β; BN9
PN9 = ∆21(N9,P)[(µ1/2) cos (β 1 γ) 1 µ cos (β 2 γ)]m1m2 cos β cos γ = 2BP

N9P; BN9
P9N9 = 2∆21(P9,N9)[(µ1/2) sin (β 1 γ) 2 µ sin

(β 2 γ)]m1m2 cos β sin γ. h BP9
DG = 2√2∆21(D,G)µm1m2 sin γ9 sin γ; BP9

SG = √2∆21(S,G)µm1m2 cos γ9 sin γ; BP9
NP9 = ∆21(P9,N)[2(µ1/2) cos (β 1 γ) 1

µ cos (β 2 γ)] × m1m2 sin β sin γ = 2BN
P9N; BP9

N9P9 = ∆21(P9,N9)[(µ1/2) sin (β 1 γ) 2 µ sin (β 2 γ)]m1m2 cos β sin γ = 2BN9
P9N9.

converts the antiaromatic perimeter from a perfect biradical to
a biradicaloid. As long as ∆S is relatively small, ∆S < 2[2N],
the molecule remains antiaromatic and all eleven configurations
considered presently need to be kept. By a suitable choice of an
atom numbering system, it is possible to force σ to become
equal to an integral multiple of π/2 as long as at least one
symmetry plane perpendicular to the annulene ring is present
(see Parts 2 and 3 for more detail).

For an uncharged perimeter, it is then possible to find explicit
solutions for the ground and excited state wavefunctions and
spectroscopic properties, and the latter are given in Tables
19–21. Note that the spectroscopic properties of a hetero-
symmetric 12 biradicaloid (σ = 0) change discontinuously at
∆S = 2[2N] since the nature of the ground state changes
abruptly (Table 19, 0 < ∆S < 2[2N]; Table 20, ∆S > 2[2N]).
Systems of this kind will be prone to a pseudo-Jahn–Teller
distortion.

We have not found a simple closed-form solution for the
case of a charged perimeter and a numerical diagonalization is
necessary.

In more strongly perturbed high-symmetry systems
(∆S > 2[2N]) only seven of the eleven configurations need to be
kept. These molecules are called unaromatic [or ambiaromatic,
if they can equally well be derived from a (4N 1 2)-electron
perimeter]. Explicit solutions for uncharged as well as charged
perimeters are given in Parts 2 and 3.

5.3 Low-symmetry antiaromatic biradicals and biradicaloids
More general weak perturbations (∆S < 2[2N]; ∆L or ∆H ≠ 0)
lead to Hamiltonian matrices which can only be diagonalized
numerically. By introducing the perturbation gradually it
may be possible to relate the results to one of the algebraically
soluble cases listed above. This will provide insight into trends
in the results as well as a correlation to the states of the parent
perimeter, thus providing labels and nomenclature.

As soon as the perturbation is strong (∆S > 2[2N]), the
molecule is unaromatic (or ambiaromatic). Then, it is possible
to discard four of the eleven configurations and solve explicitly
for many cases of interest (Parts 2 and 3).

6. Comparison with numerical calculations and
summary

Results of PPP calculations of state energies and symmetries
for a series of fourteen molecules selected for testing and illus-
tration, performed using standard parameters 29 and the same
eleven configurations, are shown in Fig. 3. The calculated
dipole strengths and MCD A, B and C terms, which are not
shown, support fully the results obtained from the perimeter
model. Since the PPP model 30 is well known to give excellent
results for ππ* states of cyclic π-electron systems, this lends
additional support to the perimeter model analysis. For several
of the smallest antiaromatic perimeters good quality ab initio
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Table 20 Unaromatic high-symmetry perturbed 4N-electron [4N ]annulenes with σ = 0 (strongly heterosymmetric biradicaloids, ∆H = ∆L =
∆HSL = 0, ∆S > 2[2N ]) a,b

State Energy and symmetry at ∆S = 0 Energy D c MMM d B c

G [2N ] B2g
(1) [2N ] 2 S — 0 —

S 2[2N ] B1g
(2) 2[2N ] 0 0 0

D [2N ] A1g
(2) [2N ] 1 ∆S 0 0 0

N c 1 [2N 2 1] 2 [1] E1u
(2) c 1 [2N 2 1] 2 [1] 2 (∆S/2) tan β m2

2 sin2 β9 µ2/2 BN
SG 1 BN

PN 1 BN
P9N

e

P c 2 [2N 2 1] 1 [1] E(2)
2N 1 1,u c 2 [2N 2 1] 1 [1] 2 (∆S/2) tan γ m1

2 sin γ9 µ2/2 BP
SG 1 BP

NP 1 BP
N9P

f

N9 c 1 [2N 2 1] 1 [1] E(1)
2N 1 1,u c 1 [2N 2 1] 1 [1] 1 (∆S/2) tan β m2

2 cos2 β9 µ2/2 BN9
SG 1 BN9

PN9 1 BP9
P9N9

g

P9 c 1 [2N 2 1] 1 [1] E1u
(1) c 1 [2N 2 1] 1 [1] 1 (∆S/2) tan γ m1

2 cos2 γ9 µ2/2 BP9
SG 1 BP9

N9P9 1 BP9
NP9

h

a See footnote a in Table 3. b β = (1/2) tan21 (∆S/2[1]); γ = (1/2) tan21 (∆S/2[2N 2 1]); β9 = β 1 π/4; γ9 = γ 1 π/4. c Spectroscopic characteristics of
transitions from the G state. d See footnote c in Table 3. e BN

SG = 2∆21(S,G)(√2)µm1m2 sin β9 sin β; BN
PN = 2∆21(P,N)[(µ1/2) sin (β 1 γ) 1

µ sin (β 2 γ)]m1m2 sin β9 sin γ9; BN
P9N = 2∆21(P9,N)[(µ1/2) cos (β 1 γ) 2 µ cos (β 2 γ)]m1m2 sin β9 cos γ9. f B P

SG = 2∆21(S,G)(√2)µm1m2 sin γ9 cos γ;
B P

NP = 2BN
PN = ∆21(P,N)[(µ1/2) sin (β 1 γ) 1 µ sin (β 2 γ)]m1m2 sin β9 sin γ9; B P

N9P = 2∆21(N9,P)[(µ1/2) cos (β 1 γ) 1 µ cos (β 2 γ)]m1m2 cos β9 sin γ9.
g BN9

SG = 2∆21(S,G)(√2)µm1m2 cos β9 cos β; BN9
PN9 = 2BP

N9P = ∆21(N9,P)[(µ1/2) cos (β 1 γ) 1 µ cos (β 2 γ)]m1m2 cos β9 sin γ9; BN9
P9N9 = ∆21(P9,N9)[(µ1/

2) sin (β 1 γ) 2 µ sin (β 2 γ)]m1m2 cos β9 cos γ9. h BP9
SG = ∆21(S,G) (√2)µm1m2 cos γ9 sin γ; BP9

N9P9 = 2BN9
P9N9 = 2∆21(P9,N9)[(µ1/2) sin (β 1 γ) 2 µ sin

(β 2 γ)]m1m2 cos β9 cos γ9; BP9
NP9 = 2BN

P9N = ∆21(P9,N)[(µ1/2) cos (β 1 γ) 2 µ cos (β 2 γ)]m1m2 sin β9 cos γ9.

Fig. 3 Energies of the electronic states of 4N-electron [n]annulenes of Dnh symmetry in the PPP approximation, in units of [2N]. At the bottom, n
and the charge are indicated. On top, the magnitude of [2N] in eV is shown for each case.

calculations of state energies and symmetries have been pub-
lished.18 Once again, these agree with the results of the perim-
eter model.

Although measurements on Dnh geometry systems will be
complicated in practice by Jahn–Teller and pseudo-Jahn–Teller
effects, the results for this idealized geometry will serve as a
starting point for the treatment of the spectra of real molecular
systems. In some cases it appears that the A singlet is the true
experimental ground state.28 Then, the present results should be
applicable directly.

In addition to working out the spectroscopic properties, and
in particular the MCD spectra to be expected for the parent

antiaromatic annulenes, we have also considered those per-
turbations which preserve their antiaromatic biradical or
biradicaloid nature. Very few antiaromatic biradicals and
biradicaloids have been adequately characterized experi-
mentally so far, and virtually no MCD spectra have been
reported. The present results should be helpful in the detection
of such molecules and in the determination of the nature of
their ground electronic state.

The extension of the present results for idealized perimeters
to more strongly perturbed 4N-electron perimeters, i.e. to
unaromatic (or ambiaromatic) molecules, is presented in Parts
2 and 3. It is of greater practical importance than the present
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Table 21 High-symmetry 4N-electron [4N ]annulene, biradicaloids with σ = π/2 (∆H = ∆L = ∆HSL = 0, ∆S ≠ 0) a,b

State Energy and symmetry at ∆S = 0 Energy D c MMM d B c

G 2[2N ] B1g
(2) 2[2N ] 2 ∆S tan α — 0 —

S 1[2N ] B2g
(1) [2N ] 0 0 0

D 1[2N ] A1g
(2) [2N ] 1 ∆S tan α 0 0 0

N c 2 [1] 1 [2N 2 1] E1u
(2) c 2 [1] 1 [2N 2 1] 2 (∆S/2) tan β m2

2 sin2 (α 1 β) µ2/2 BN
SG 1 BN

PN 1 BN
P9N

e

N9 c 1 [1] 2 [2N 2 1] E(2)
2N 1 1,u c 1 [1] 2 [2N 2 1] 1 (∆S/2) tan β m2

2 cos2 (α 1 β) µ2/2 BN9
SG 1 BN9

PN9 1 BN9
P9N9

f

P c 1 [1] 1 [2N 2 1] E(1)
2N 1 1,u c 1 [1] 1 [2N 2 1] 2 ∆S/2 m1

2 sin2 α9 µ2/2 BP
SG 1 BP

N9P 1 BP
NP

g

P9 c 1 [1] 1 [2N21] E1u
(1) c 1 [1] 1 [2N 2 1] 1 ∆S/2 m1

2 cos2 α9 µ2/2 BP9
SG 1 BP9

N9P9 1 BP9
NP9

h

a See footnote a in Table 3. b α = (1/2) tan21 (∆S/[2N ]); β = (1/2) tan21 {∆S/2([1] 2 [2N 2 1])}; α9 = α 1 π/4; β9 = β 1 π/4. c Spectroscopic character-
istics of transitions from the G state. d See footnote c in Table 3. e BN

SG = 22∆21(S,G)µm1m2 cos α sin (α 1 β) sin β; BN
PN = 2∆21(P,N)[(µ1/

2) sin β9 2 µ cos β9]m1m2 sin α9 sin (α 1 β); BN
P9N = ∆21(P9,N)[(µ1/2) cos β9 2 µ sin β9]m1m2 cos α9 sin (α 1 β). f BN9

SG = 22∆21(S,G)µm1m2 cos α
cos (α 1 β) cos β; BN9

PN9 = 2∆21(P,N9)[(µ1/2) cos β9 1 µ sin β9]m1m2 sin α9 cos (α 1 β); BN9
P9N9 = 2∆21(P9,N9)[(µ1/2) sin β9 1 µ cos β9]m1m2 cos α9

cos (α 1 β). g BP
SG = 2∆21(S,G)(√2)µm1m2 sin α9 cos α; BP

N9P = 2BN9
PN9 = ∆21(P,N9)[(µ1/2) cos β9 1 µ sin β9]m1m2 sin α9 cos (α 1 β); BP

NP = 2BN
PN =

∆21(P,N)[(µ1/2) sin β9 2 µ cos β9]m1m2 sin α9 sin (α 1 β). h BP9
SG = 2∆21(S,G)(√2)µm1m2 cos α9 cos α; BP9

N9P9 = 2BN9
P9N9 = ∆21(P9,N9)[(µ1/2) sin β9 1

µ cos β9]m1m2 cos α9 cos (α 1 β); BP9
NP9 = 2BN

P9N = 2∆21(P9,N)[(µ1/2) cos β9 2 µ sin β9]m1m2 cos α9 sin (α 1 β).

results in themselves, since it permits the interpretation of
spectra of numerous π systems that already are well known.
As justified in Part 2, the criterion for strong perturbation is
∆S > 2[2N], and Fig. 3 shows that [2N] is of the order of 1 eV.
For our purposes, then, an unaromatic (or ambiaromatic)
species is produced from a 4N-electron perimeter by a perturb-
ation that induces at least a ≈2 eV gap between the one-electron
energies of the highest occupied and the lowest empty MO.
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